Central Masking: Fact or Artifact?

  • Alison L. McQueen State University of New York College at Potsdam
  • James G. Terhune State University of New York College at Potsdam


Fourteen people with normal hearing participated in a study that used signal detection theory to examine central auditory masking. Participants were tested in a sound-attenuating chamber. Absolute thresholds for stimuli (1000 Hz pure-tone, white noise masker at 40 dB SL) were established: first for the tone, then for the tone in combination with the masker in the contralateral ear. A mean threshold increase (3.8 dB) demonstrated central masking. Contrary to prediction, a paired-samples t-test revealed significant shifts in participant sensitivity (d´) [t (10) = 4.46, p < .001], suggesting that participants’ sensitivity to the tone decreased in the masking condition. These findings provide support for the theory that central masking is an auditory processing phenomenon.


Abdi, H. (2007). Signal detection theory. In N. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage.

Benton, S. L., & Sheeley, E. C. (1987). Effects of three contralateral maskers on pure-tone thresholds using manual audiometry. Audiology, 26, 227–234. doi:10.3109/00206098709081551

Blegvad, B., & Terkeldsen, K. (1966). Bekesy audiometry, SISI-test and contralateral masking. Acta Oto-Laryngol, 453–458. doi:10.3109/00016486609119589

Breier, J. I., Gray, L. C., Klaas, P., Fletcher, J. M., & Foorman, B. (2002). Dissociation of sensitivity and response bias in children with attention-deficit/hyperactivity disorder during central auditory masking. Neuropsychology, 16, 28–34.doi:10.1037//0894-4105.16.1.28

Demany, L. (1985). Perceptual learning in frequency discrimination. Journal of the Acoustical Society of America, 78, 1118–1120.

Demany, L., & Semal, C. (2002). Learning to perceive pitch differences. Journal of the Acoustical Society of America, 111, 1377–1388. doi:10.1121/1.1445791

Egan, J. P. (1971). Auditory masking and signal detection theory. Audiology, 10, 41–47. doi:10.3109/00206097109072539

Fechner, G. T. (1856). Elements of psychophysics. Leipzig, Germany: Breitkopf & Hartel.

Green D. M., Swets, J. A. (1966). Signal detection theory and psychophysics. New York, NY: Wiley.

Greenberg, G. Z., & Larkin, W. D. (1968). Frequency-response characteristic of auditory observers detecting signals of a single frequency in noise: The probe-signal method. The Journal of the Acoustical Society of America, 44(6), 1513–1523.

Hafter, E. R., & Kaplan, R. (1976). The interaction between motivation and uncertainty as a factor in detection. Moffit Field, CA: Ames Research Center. doi:10.1121/1.1911290

Hafter, E. R., Sarampalis, A., & Loui, P. (2008). Auditory attention and filters. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Auditory perception of sound sources. New York, NY: Springer.

Hawkins, J. E., & Stevens, S. S. (1950). The masking of pure tones and of speech by white noise. The Journal of the Acoustical Society of America, 22, 6–13. doi:10.1121/1.1906581

Hirsh, I. J. (1948). The influence of interaural phase on interaural summation and inhibition. The Journal of the Acoustical Society of America, 20, 536–544. doi:10.1121/1.1916992

Larkin, W. D., & Greenberg, G. Z. (1970). Selective attention in uncertain frequency detection. Perception and Psychophysics, 8, 179–184. doi:10.3758/BF03210201

Las, L., Stern, E. A., & Nelken, I. (2004). Representation of tone in fluctuating maskers in the ascending auditory system. The Journal of Neuroscience, 25(6), 1503–1513.

Laucius, G., & Young, I. M. (1972). Contralateral masking effects on auditory thresholds. The Journal of the Acoustical Society of America, 12, 271–275.

McNicol, D. (2005). A Primer on Signal Detection Theory. Mahwah, NJ: Larence Erlbaum Associates.

Moore, B. C., Peters, R. W., & Glasberg, B. R. (1999). Effects of frequency and duration on psychometric functions for detection of increments and decrements in sinusoids in noise. The Journal of the Acoustical Society of America, 106(6), 3539–3552. doi:10.1121/1.428207

Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. The Quarterly Journal of Experimental Psychology, 11(1), 56–60. doi:10.1080/17470215908416289

Neuert, V., Verhey, J. L., & Winter, I. M. (2004). Responses of dorsal cochlear nucleus neurons to signals in the presence of modulated maskers. The Journal of Neuroscience, 24(25), 5789–5797. doi:10.1523/JNEUROSCI.0450-04.2004

Penner, M. J. (1972). Effect of payoffs and cue tones on detection of sinusoids of uncertain frequency. Perception and Psychophysics, 11(3), 198–202. doi:10.3758/BF03206248

Rosen, S., & Stock, D. (1992). Auditory filter bandwidths as a function of level at low frequencies (125 Hz–2 kHz). The Journal of the Acoustical Society of America, 92(1), 773–781.

Scharf, B., Magnan, J., & Chays, A. (1997). On the role of the olivocochlear bundle in hearing: 16 case studies. Hearing Research, 103, 101–122. doi:10.1016/S0378-5955(96)00168-2

Schlauch, R. S., & Hafter, E. R. (1991). Listening bandwidths and frequency uncertainty in pure-tone signal detection. The Journal of the Acoustical Society of America, 90(3), 1332–1339.

Smith, D. W., Turner, D. A., & Henson, M. M. (2000). Psychophysical correlates of contralateral efferent suppression I. The role of the medial olivocochlear system in “central masking” in nonhuman primates. The Journal of the Acoustical Society of America, 107(2), 933–941. doi:10.1121/1.428274

Swets, J. A., Green, D. M., & Tanner, W. P. (1961). On the width of critical bands. The Journal of the Acoustical Society of America, 34(1), 108–113.

Zwislocki, J. J., Damianopoulos, E. N., Buining, E., & Glantz, J. (1967). Central masking: Some state-steady and transient effects. Perception and Psychophysics, 2, 59–64.

Zwislocki, J. J. (1972). A theory of central auditory masking and its partial validation. The Journal of the Acoustical Society of America, 2(2), 644–659. doi:10.1121/1.1913154